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A regular representation is proposed for singular integrals present in integral equa- 
tions of the second fundamental problem of elasticity theory. This representation 
is used to realize the successive approximations method in solving internal and 
external problems. Questions of constructing a computational scheme are dis- 
cussed. 

Use of potential theory apparatus permits reduction of the analysis of the fundamental 
boundary value problems of elasticity theory to integral equations Cl]. To solve the second 
fundamental problem, Weil constructed regular integral equations of the second kind 
which generally possess eigenfunctions. Hence, their solution can be realized only after 
all the eigenfunctions of the adjoint equation have been determined, which is a compli- 
cated problem. 

The application of a generalized elastic potential of a simple layer alao reduces the 
mentioned boundary value problem to integral equations of the second kind, It is true 
these equations are not Fredholm equations in the classical form since their kemelshave 
a second order polarity, and the corresponding integrals should be understood in the prln- 

cipal value sense. Consequently, the equations themselves are called singular. The equa- 
tions mentioned possess quite favorable spectral properties, In the case of the external 
problem (we denote it by Z’,) the equation is solvable for an arbitrary right-hand side, 
In the case of the internal problem (Ti) , the equation is solvable when the right-hand 
side satisfies definite conditions but they agree with the conditions for existence of the 
solution of the initial problem of elasticity theory (the principal vector and the principal 
vector-moment of the external forces equal zero} and hence are assumed satisfied accor- 
ding to the fo~ulation of the problem. 

Each of the methods of solving the integral equations starts from the possibility of eva- 
luating the integral terms for some representation of the required density. The associated 
difficulties are aggravated in solving singular, especially nonuniform, integral equations. 

Questions ofrealizing the mechanical quadrature method in application to singular 
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integral equations of the fundamental three-dimensional problems of elasticity theory 

have been examined in [2 - 43, 
A representation is given below for singular integrals present in the equations of the 

second fundamental problem of elasticity theory, which does not explicitly contain sin- 
gular terms and removes the difficulties mentioned above for their evaluation. 

Let us represent the singular equation of the second fundamental problem as 

The problem T, corresponds to the value It = 1 and the problem Ti to the value 
X= - 1 . The matrix I’i (P, q) is obtained as a result of the stress operator acting on 
the Kelvin-Somigliana tensor, S isthe surface bounding the body under consideration 
and is a Liapunov surface, and the function f (p) agrees with the boundary values of the 

stress vector in the problem Ti and is equal, but opposite in sign, to it in the problem T,, 
This function should belong to the Hclder-Lipschitz class. 

It has been proved [5] that the Fredholm alternatives are valid for the singular integral 
equation (1). It follows from the uniqueness theorem for the solution of the fundamental 

problems of elasticity theory and the Fredholm alternatives [6] that (1) (considered in 
the complex h plane) has just real eigennumbers which are not less than unity in abso- 
lute value. The number h = 1 is not an eigennumber. Consequently,the problem T, 

turns out to be always solvable. The number I = - i is an eigennumber. Since the 
eigenfunctions of the adjoint equation correspond to displacement of the elastic body as 
a rigid whole, then the solvability conditions for (1) agree in this case with the existence 
conditions for the solution of the considered elasticity theory problem and are, hence, 
considered satisfied. 

Let us transform the singular integral in (1) thus : 
n 

Z = - rp (p) + A {PI (PI q) cp (a - I-2 (~1 q) cp (~11 ds, 

5 rz(p,q)dS,=--E 

(the matrix I’s (p, q) is the kernel of a double-layer potential and E is the unit matrix). 
We consider the integral obtained above. The singular terms in the matrices rr (p, q) 
and r4 (p, q) agree, and the function q (p) belongs to the Hijlder-Lipschitz class (as the 
solution of (1) under the constraints formulated on the surface and the right-hand side 

[‘7]). Hence, the integral mentioned is improper. 
Using the identity (2), we can obtain a regular representation of the integral equations 

(1) themselves and can use known methods for their solution. Application of the method 
of mechanical quadratures is not expedient since it is required to solve linear systemsof 
very high order even for fairly smooth surfaces and a smoothly varying load. Moreover, 
the question of the convergence of the approximate solutions to the exact solution re- 
mains open, 

We turn to successive approximations, whose application to solve the singular integral 
equations of elasticity theory has been examined in 181. The solution is sought in the 
form of the series 

cp (P) = fg h”Yn (P) (3) 
7,=-o 
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Substituting it into (1) and equating coefficients of identical powers of h, we arrive at 
the recurrence relations 

y?I (P) = 
i 

* r1 (P, 4) Y,_, (cl) dS,, n=1,2,..., yll (P) = f 04 (4) 

The presence of the regular representation (2) permits evaluation of the terms in the 
series (3) with arbitrary accuracy. 

Let US consider the question of the convergence of the series (3) in the problems !I’, 
and TG We note that the spectral properties of (I) and of the equation of the Neumann 
problem (for the Laplace equation) basically agree. The convergence of successive appro- 
ximations in this latter case has been investigated in [9]. The results obtained have been 
extended [8] to the integral equations of elasticity theory. 

In the case of the problem Ta the series (3) generally diverges since the appropriate 
value of h is on the circle of convergence of the resolver& A convergent rep~~ntation 
of the solution is 

Cp (P) .= + Yo (PI + $5 lu”,,l (iDI + ‘r, (PII 
n=o 

Other convergent representations, obtained by means of analytic continuation in the 
parameter h [lo], are also possible. 

Let us consider the problem Ti. We elucidate the proof of the convergence of the 

series (3) by following the comment to [8] presented in 171. Let us recall the expression 
for the resolvent of (1) B 

R (p, q, a) =--!-” [ 2 b’ @)*I? Co)\ -t .4 (P, ‘I, I<) 
* +A k-1 

(5) 

Here A (P, q, X) is a holomorphic matrix in h in a circle of radius greater than unity, 

b” (P) and x” (p) (k = 1, 2 . . ., 6) are bio~honormal systems of eigenfunctions of the 
initial equation and its adjoint. The solution of (1) is represented by means of the re- 

solvent (5) as 
cp (P) f (P) -I- h J 44 (P, ‘7, h) I (i/) dSl, (6) 

s 

The term corresponding to the first term is missing because of compliance with the con- 

dition of o~ogonality of the right-hand side to all the functions X” id 

!, 
’ f ((I) Xh’ (q) dS, E 0, k -7 1, 2, I . , 0 (7) 

S 

Therefore. the required function tp (p) turns out to be represented as a holomorphic ex- 
pression in a- in a circle of radius greater than unity, namely, this expression is con&m+ 
ted by the series (3). Consequently, the series should converge for h = - I, despite the 

presence of a pole of the resolvent. 
We note that upon compliance with conditions (7) the series (3) also turns out to be 

convergent for the problem T,. 
It must be noted that the result of Pham The Lai used above (and the N, M, Giunter 

proof in the case of the external Neumann problem, equivalently) is valid only for the 
exact evaluation of the integrals at each iteration. Since the realization of the recur- 
rence relations (4) can be realized only with an error, its influence on the convergence 
of the algorithm should be clarified. 

The question of the solution of integral equations of the second kind (in the spectrum) 
by successive approximations is considered in [11] from the aspect of the theory of in- 



Application of the regular representation of singular integrals 345 

correct problems, It was assumed that all the calculations were carried out absolutely 
accurately, but the right-hod side of the equation was given with some error (6). It was 
proved that the process converges if the product 

nP 3 0 (8) 
(where n is the number of the iteration), 

As applied to the problem under study, the error in the right-hand side can be treated 
as the error of quadrature formulas. Hence, it is impossible to keep an arbitrarily large 
number of terms in (3) (according to (8)) for a fixed partition of the surface into ele- 
mentary polygons. Instead of constructing the analog to the condition (8), an equivalent 
algorithm can be proposed: for a fixed number of iterations, the computations are car- 
ried out with a successive decrease in the size of the elementary regions, which assures 
achievement of previously assigned accuracy for a finite sum (3). For an increase in the 
number of terms in the series it is necessary to introduce a still finer partition in a suit- 
able way. Realization of the proposed algorithm is connected with carrying out a large 
volume of computations. 

Let us consider another (more effective) algorithm. We recall that Pham The Lai 
proved his theorem by starting from the fact that each function ‘I’* @) is orthogonal to 
all the functions xk (P). We use this circumstance for the appropriate correction in the 
calculation of the functions Yn (p). ~tia~y, let us replace the right-hand side in the 
equation (for h = - l) 

P(P) = f (P) - i xk (r) 
J 

f (Q) Xk (9) dS, (9) 
k=l 

We assume that the functions xk (p) are developed in orthonormal form, 
For an accurate calculation of the additional terms, they should vanish from conditions 

(7). Some, generally small, additions are obtained in calculations by any quadrature for- 
mula. The function l*(p) (in contrast to f @)) is strictly orthogonal to each of the func- 
tions x” (p) (within the framework of the quadrature formula used if orthonormalization 
of the functions xk (p)is accomplished by means of the same formula). 

In order for any of the interactions be strictly orthogonal to the functions Xk (p) I a 
tr~formation analogous to (9) and of the form 

8 

Y; (p) = Yn (p) - 2 x” (P) J \y, t(r) xk b) dS, 

must be accomplished each time. 
$==I s 

The functions xk (p) should generally be understood in the discussions presented as 
eigenfunctions of the adjolnt approximate equation which occurs during realization of 
the com~tation~ scheme. 

If the shape of the surface and the loading are such that there are three planes of sym- 
metry, and discretization is accomplished corresponding to a symmetric manner, then all 
the additions vanish automatically. 

Let us describe one of the possible schemes for realizing the proposed algorithm to 
solve the integral equation (1). 

We separate the surface S into small polygons whose vertices will be called nodal 
points and denoted by qi. We select a point located in the central part in each polygon, 
at the center of gravity, say, and call them reference points denoting by pi. 

Let us initially determine the values of the function Y,, (p) at all the reference and 
nodal points by equating them to the right-hand sides of the equation. Furthermore, we 
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find the function Yr (p) at the reference points by using some quadrature formula in the 
regular representation (2) to calculate the improper integral, by assuming a term of the 
integral sum, say, to be equal to the product of the mean value with respect to the appro- 
priate nodal points of the expression 

TI (Pi, qj) Y, (qj) - ra (Pit qj) yo (Pi) 

on the area of the polygon. We determine the values of Yz (p) at the nodal points by 
~~r~~ation by starting from the values of the functions Y, (p) at the nearest reference 
points. The subsequent constructions are obvious. 

The external and internal problems of elasticity theory for a sphere were considered 
in order to determine the efficiency of the approach proposed. The loading was reduced 
to hydrostatic pressure in both cases (because of the simplicity of determining the exact 
value of the density required [X2]). We assume a unit pressure. Then the exact values 
of the density (in absolute value) turn out to equal @ = s/s (1 - Y} / (1 + Y) and @‘a = 
- 2/a (1 - y) I (1 - Zy) (v is the Poisson’s ratio). 

Let us partition the sphere surface by introducing a geographical coordinate system 
(- n d 9, B a’c, --n I 2 < @ d n I 2) by dividing the angle ‘p into n equal parts, and the 
angle 8 into m parts. The coordinates of the reference points were given by the formulas 

cpi = (2i I (n - I)) Tc, i = 0, 1,. * ., n; 0j = (j/ m - l/J 37. 

j = 0, 1,. . ., m 

Presented in Table I are the results of computations for the functions W,, CD, and @i 
(keeping five terms) at the pole (A) and equator (B). The numbers n and m were taken 
equal to eight. The Poisson’s ratio was assumed to be 0.3. We note that in this case the 
exact value of (Da is - 1.3125 while #i is 0.807 (independently of the location of the 
point, na~ra~y), 

Table 1 

I I 
Yyo Yl Y* / YI 1 up4 1 oa 1 @i 

A 1.ooo 0.247 0.063 0.015 0.004 --1,329 0.804 
3 1 .ooo 0.269 0.064 0.016 0.004 --1.353 0.784 

The main assertions of the research have been published briefly in abstracts. (Perlin , 
P. I. , On a method of evaluating singular integrals and its application to the solution of 
singular integral equations of ~~-d~e~onal problems of elasticity theory. All-Union 
School on Theoretical Investigations by the Method of the Mechanics of Continuous 
Media, Abstracts of Reports, 1973). 
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The nature of the normal stress singularities under an annular stamp as one ap 

proaches the outer and inner contours is clarified. 
An approach permitting to obtain an asymptotic expansion for the contact 

stress which consists of one term (an asymptotic representation in the Erdelyi 
terminology), is developed. The method proposed permits the investigation of a 
number of contact problems associated with an annular stamp. However, only an 
axisymmetric contact problem is considered in this paper. A survey of the re- 
search devoted to the problem of impressing an annular stamp into an elastic 
half-space is presented in [l, 23. 

The problem.of the behavior of solutions of elasticity theory boundary value 

problems in the neighborhood of points and lines of separation of boundary con- 
ditions was examined in [3 - 83, etc. 

1. We use a P , rp , z cylindrical coordinate system, whose z -axis is perpendicular 


